Counting real algebraic numbers with bounded derivative of minimal polynomial
نویسندگان
چکیده
منابع مشابه
Real algebraic numbers and polynomial systems of small degree
Based on precomputed Sturm-Habicht sequences, discriminants and invariants, we classify, isolate with rational points, and compare the real roots of polynomials of degree up to 4. In particular, we express all isolating points as rational functions of the input polynomial coefficients. Although the roots are algebraic numbers and can be expressed by radicals, such representation involves some r...
متن کاملCounting Algebraic Numbers with Large Height Ii
We count algebraic numbers of fixed degree over a fixed algebraic number field. When the heights of the algebraic numbers are bounded above by a large parameter H, we obtain asymptotic estimates for their cardinality as H → ∞.
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولComputing algebraic numbers of bounded height
We describe an algorithm which, given a number field K and a bound B, finds all the elements of K having relative height at most B. Two lists of numbers are computed: one consisting of elements x ∈ K for which it is known with certainty that HK(x) ≤ B, and one containing elements x such that |HK(x)− B| < θ for a tolerance θ chosen by the user. We show that every element of K whose height is at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2019
ISSN: 1793-0421,1793-7310
DOI: 10.1142/s1793042119501227